41 research outputs found

    Evaluating the accuracy of diffusion MRI models in white matter

    Full text link
    Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of some of the models that are commonly used in analyzing human white matter have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MRI models. The diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian distribution. Sparse fascicle models (SFM) summarize the signal as a linear sum of signals originating from a collection of fascicles oriented in different directions. We use cross-validation to assess model-accuracy at different gradient amplitudes (b-values) throughout the white matter. Specifically, we fit each model to all the white matter voxels in one data set and then use the model to predict a second, independent data set. This is the first evaluation of model-accuracy of these models. In most of the white matter the DTM predicts the data more accurately than test-retest reliability; SFM model-accuracy is higher than test-retest reliability and also higher than the DTM, particularly for measurements with (a) a b-value above 1000 in locations containing fiber crossings, and (b) in the regions of the brain surrounding the optic radiations. The SFM also has better parameter-validity: it more accurately estimates the fiber orientation distribution function (fODF) in each voxel, which is useful for fiber tracking

    Cluster analysis of resting-state fMRI time series

    No full text
    Functional MRI (fMRI) has become one of the leading methods for brain mapping in neuroscience. Recent advances in fMRI analysis were used to define the default state of brain activity, functional connectivity and basal activity. Basal activity measured with fMRI raised tremendous interest among neuroscientists since synchronized brain activity pattern could be retrieved while the subject rests (resting state fMRI). During recent years, a few signal processing schemes have been suggested to analyze the resting state blood oxygenation level dependent (BOLD) signal from simple correlations to spectral decomposition. In most of these analysis schemes, the question asked was which brain areas “behave” in the time domain similarly to a pre-specified ROI. In this work we applied short time frequency analysis and clustering to study the spatial signal characteristics of resting state fMRI time series. Such analysis revealed that clusters of similar BOLD fluctuations are found in the cortex but also in the white matter and sub-cortical gray matter regions (thalamus). We found high similarities between the BOLD clusters and the neuro-anatomical appearance of brain regions. Additional analysis of the BOLD time series revealed a strong correlation between head movements and clustering quality. Experiments performed with T1-weighted time series also provided similar quality of clustering. These observations led us to the conclusion that non-functional contributions to the BOLD time series can also account for symmetric appearance of signal fluctuations. These contributions may include head motions, the underling microvasculature anatomy and cellular morphology

    Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places

    No full text
    A central finding of functional MRI studies is the highly selective response of distinct brain areas in the occipital temporal cortex to faces and places. However, little is known about the association of white matter fibers with the processing of these object categories. In the current study we used DTI-based tractography to reconstruct two main fibers that connect the occipital lobe with the anterior temporal lobe (inferior longitudinal fasciculus-ILF) and with the frontal lobe (inferior fronto-occipital fasciculus-IFOF) in normal individuals. In addition to MRI scans subjects performed face, scene and body recognition tasks outside the scanner. Results show that recognition of faces and scenes were selectively associated with separate parts of the ILF. In particular, face recognition was highly associated with the fractional anisotropy (FA) of the anterior part of the ILF in the right hemisphere. In contrast, scene recognition was strongly correlated with the FA of the posterior and middle but not the anterior part of the ILF bilaterally. Our findings provide the first demonstration that faces and places are not only associated with distinct brain areas but also with separate parts of white matter fibers

    A Two-Stage Cascade Model of BOLD Responses in Human Visual Cortex

    Get PDF
    <div><p>Visual neuroscientists have discovered fundamental properties of neural representation through careful analysis of responses to controlled stimuli. Typically, different properties are studied and modeled separately. To integrate our knowledge, it is necessary to build general models that begin with an input image and predict responses to a wide range of stimuli. In this study, we develop a model that accepts an arbitrary band-pass grayscale image as input and predicts blood oxygenation level dependent (BOLD) responses in early visual cortex as output. The model has a cascade architecture, consisting of two stages of linear and nonlinear operations. The first stage involves well-established computations—local oriented filters and divisive normalization—whereas the second stage involves novel computations—compressive spatial summation (a form of normalization) and a variance-like nonlinearity that generates selectivity for second-order contrast. The parameters of the model, which are estimated from BOLD data, vary systematically across visual field maps: compared to primary visual cortex, extrastriate maps generally have larger receptive field size, stronger levels of normalization, and increased selectivity for second-order contrast. Our results provide insight into how stimuli are encoded and transformed in successive stages of visual processing.</p></div

    Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure

    No full text
    Diffusion imaging and bound pool fraction (BPF) mapping are two quantitative magnetic resonance imaging techniques that measure microstructural features of the white matter of the brain. Diffusion imaging provides a quantitative measure of the diffusivity of water in tissue. BPF mapping is a quantitative magnetization transfer (qMT) technique that estimates the proportion of exchanging protons bound to macromolecules, such as those found in myelin, and is thus a more direct measure of myelin content than diffusion. In this work, we combine BPF estimates of macromolecular content with measurements of diffusivity within human white matter tracts. Within the white matter, the correlation between BPFs and diffusivity measures such as fractional anisotropy and radial diffusivity was modest, suggesting that diffusion tensor imaging and bound pool fractions are complementary techniques. We found that several major tracts have high BPF, suggesting a higher density of myelin in these tracts. We interpret these results in the context of a quantitative tissue model

    More than myelin: Probing white matter differences in prematurity with quantitative T1 and diffusion MRI

    No full text
    Objective: We combined diffusion MRI (dMRI) with quantitative T1 (qT1) relaxometry in a sample of school-aged children born preterm and full term to determine whether reduced fractional anisotropy (FA) within the corpus callosum of the preterm group could be explained by a reduction in myelin content, as indexed by R1 (1/T1) from qT1 scans. Methods: 8-year-old children born preterm (n = 29; GA 22–32 weeks) and full term (n = 24) underwent dMRI and qT1 scans. Four subdivisions of the corpus callosum were segmented in individual native space according to cortical projection zones (occipital, temporal, motor and anterior-frontal). Fractional anisotropy (FA) and R1 were quantified along the tract trajectory of each subdivision and compared across two birth groups. Results: Compared to controls, preterm children demonstrated significantly decreased FA in 3 of 4 analyzed corpus callosum subdivisions (temporal, motor, and anterior frontal segments) and decreased R1 in only 2 of 4 corpus callosum subdivisions (temporal and motor segments). FA and RD were significantly associated with R1 within temporal but not anterior frontal subdivisions of the corpus callosum in the term group; RD correlated with R1 in the anterior subdivision in the preterm group only. Conclusions: Myelin content, as indexed by R1, drives some but not all of the differences in white matter between preterm and term born children. Other factors, such as axonal diameter and directional coherence, likely contributed to FA differences in the anterior frontal segment of the corpus callosum that were not well explained by R1. Keywords: Preterm, Corpus callosum, Fractional anisotropy, Development, myeli
    corecore